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Theory of local electronic properties and finite-size effects in nanoscale open chains
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The local electronic structure of nanoscale chains is investigated theoretically. We propose a mechanism to
explain the even-odd oscillation observed in the length distribution of atom chains. We study the spatial peak
structure as obtained by scanning-tunneling-microscopy constant-current topography as a function of the
electron-electron interaction, band filling, and temperature. The site-dependent magnetic moment is also

examined.
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I. INTRODUCTION

The recent advances in the manufacturing of structures on
the nanoscale, with dimensions that are intermediate in size
between isolated atoms and molecules and bulk materials,
has opened up numerous possibilities for constructing new
devices. In particular, recently the effects of electronic quan-
tum confinement within chains of finite length have been
studied.'~® With the help of scanning tunneling microscopy
(STM) the formation of quantized localized states in the
pseudogap of the substrate bulk band in chains at semicon-
ductor or insulator surfaces has been observed.!

The investigation of the electronic properties of nanoscale
atomic clusters is particularly interesting since they suffer
strong effects due to the finite chain length. The breaking of
translational symmetry creates electronic end states. The
electronic quantum confinement on chains of finite length
changes the density of states. The conductivity along the
chain shows spatial variations.!~3 Direct observation of the
local electronic structure on a nanoscale atomic chain by
STM stresses the importance of exploring these effects theo-
retically.

While some STM measurements can be explained on the
basis of noninteracting electrons,'~* others instead suggest a
strong interaction between electrons,® indicating the possibil-
ity of a description using the Hubbard model. Results for
extremely small systems without a systematic extrapolation
to larger systems would not have been appropriate some
years ago, when nanoscale devices were only known as a
theoretical possibility. To manipulate nanostructures, it has
become important, not only to obtain new insights regarding
theoretical models, but certainly also to better understand the
physical properties of these systems.

In this paper we study theoretically the local behavior of
the physical quantities of open chains on the nanoscale. We
report on site-dependent properties of the electronic quantum
confinement within finite-length chains. This theory allows
for an interpretation of experimental results. We studied two
different aspects of these systems. First, considering only the
electronic structure, we introduce a model that captures
qualitatively the experimental chain length distribution. For
this case, we analyzed the internal structure of atom chains
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through the site-dependent occupation number along the axis
of the chain for one electron. Second, we studied the
electron-electron interaction by using the Hubbard model to
understand the main effects of electronic quantum confine-
ment within finite-length chains.

The organization of this paper is as follows. Our investi-
gation of the chain length distribution using the tight-binding
approach is presented in Sec. II. The results for local occu-
pation numbers and for the site-dependent magnetic moment
as a function of the electron-electron interaction, band filling,
and temperature on electronic quantum confinement within
finite-length chains are presented in Sec. III. Our conclusions
are presented in Sec. I'V.

II. TIGHT-BINDING APPROACH
A. Introduction

The fitting of experimental wave vectors of nanoscale
atomic clusters has shown a one-dimensional (1D) free elec-
tron band dispersion relation.!” The 1D quantum potential
well has been proposed to describe the confinement of the
electrons and the local conductivity determined by the super-
position of wave functions.!>8 Here, the experimental results
are described by the site-dependent occupation number along
the chain. We have used the tight-binding Hamiltonian

HO=_IZ (cjaci+la+H'C')7 (1)

where cja (c;e) is the creation (annihilation) operator for
electrons of spin a at site i and ¢ is the nearest-neighbor
hopping integral representing the overlap of electron wave
functions. To gain a quantitative picture of the on-site depen-
dence on a chain of N atoms, we have computed the local
occupation number

nm(l) = <\Ifm|ﬁi|\1’m>/Nv (2)

where ;=7 +1;, ﬁia=cj'ac,-a, and |W,,) is the mth eigenvec-
tor with energy E,,.

We analyze the experimental data of the eigenenergies for
chains of 3, 5, 7, 9, and 15 atoms extracted from Ref. 1. We
have fitted the data taking the experimental ground-state en-
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FIG. 1. Experimental (solid line), extracted from Ref. 1, and
theoretical (dotted line) eigenenergies for chains of (a) 3, (b) 5, (c)
7, (d) 9, and (e) 15 atoms. (f) The electron hopping strength 7 as a
function of the chain length.

ergies and considering ¢, in the tight-binding Hamiltonian of
Eq. (1), conveniently to obtain the experimental bandwidths.
The theoretical and experimental energy spectra are shown in
Figs. 1(a)-1(e). The experimental data are reproduced. The
electron hopping strength as a function of chain length can
be observed in Fig. 1(f). Note that, as the chain length in-
creases, the hopping strength decreases.

In the following will investigate the length distribution of
atom chains.

B. Length distribution

Recent results on the distribution of chain segments of
gold deposited on a Si surface reveal a relation between the
chain length and the cohesive energy.” The size distribution
is characterized by a strong peak for a length of one atom
and even-odd oscillations, where even chain lengths are fa-
vored over odd lengths. To address this problem we propose
a simple model. First, we consider the distribution of chain
lengths for a completely random distribution of defects to be
p(1-p)", where p is the defect density.’ Since chains are
fabricated at temperature 7~ 1000 °C and considering ¢
~1 eV, we must evaluate the canonical average for any
quantity x as

(x)= E x;exp(— ElkgT)IZ, (3)

where Z is the partition function. We have obtained a direct
relation between the experimental result and the local elec-
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FIG. 2. Experimental (solid circles), extracted from Ref. 9, and
theoretical (open circles) distribution of chain lengths for ¢/ (kgT)

=0.5 and (a) low defect density (p=0.0625) and (b) medium defect
density (p=0.125).

tronic density of the tight-binding model on a finite open
chain. We find that on some sites the probability of finding
electrons in the excited energy levels is zero. We also ob-
serve that these sites correspond to positions that divide the
chain in g subchains of equal length. The delocalized elec-
tronic structure determines the stability of the atom chain.
The cohesive energies are a consequence of the local elec-
tronic structure.”!” In particular, we observe that the sites
with zero probability to find electrons on odd chains are not
binding and result in a larger probability for breaking chains.
We assume that there are quantum states breaking a chain of
length m into g pieces of length N. It follows that g=g,, v
=(m+1)/(N+1), and we can write the distribution of chain
lengths as

©

P(N)=A2, p(1 - p)"{g(m,N)), (4)

m=1

where A is a normalization constant, g;(m,N)=g; yéy, k
=k(m,i) is a nontrivial function obtained numerically, and
Sy 1s Kronecker’s delta.

Figure 2 shows the experimental data, extracted from Ref.
9, and our theoretical chain length distribution for low and
medium defect densities. The even-odd oscillations are
clearly visible. Notably, the present model captures qualita-
tively the experimental chain length distribution, considering
only the electronic structure effects. The quantitative dis-

085416-2



THEORY OF LOCAL ELECTRONIC PROPERTIES AND...

agreement between theory and experiment is due to the cou-
pling of the electronic structure with the substrate. This
coupling was observed in Ref. 9 using photoemission mea-
surements of the electronic scattering vectors at the Fermi
surface of the surface states.

Furthermore, the change in chain length obtained by com-
paring STM images of the same sample region taken at dif-
ferent voltage’ is also confirmed by our results. Taking dif-
ferent voltages in STM, the system can fall into an energy
level that singles out a position which divides the chain into
subchains. An additional nearest-neighbor interaction, re-
flecting the end states in the chains, was used to describe this
effect in Ref. 7 and has already been observed in other STM
topography data.!!:1?

III. ELECTRON-ELECTRON INTERACTION

In addition to the tight-binding model, containing one
electron, it is possible to vary the band filling of chain
structures.! A strong electronic interaction was found for
small chains of Mn on CuN, and the STM data were consis-
tent with the Heisenberg model results.’ In this case, the
effect of electron-electron interaction is particularly impor-
tant.

The possibility of explaining some STM measurements
by the tight-binding model'® and others measurements by
the Heisenberg model® indicates that we can use the Hubbard
model. The 1D Hubbard model is defined by the Hamiltonian

H=Ho+ U iy, (5)

where U is the on-site Coulomb (electron-electron) interac-
tion.

Some solutions of the 1D Hubbard model have been
known since the 1960s.'3 The local behavior of the physical
quantities is, however, not completely known. Only partial
information is available.'4~'¢ For example, the spatial depen-
dence of the occupation number and of the magnetization
was calculated for the 1D Hubbard model with open bound-
ary conditions combining numerical computations from
density-matrix renormalization group and Bethe-ansatz
methods.!” Friedel oscillations for the density and the mag-
netization in open Hubbard chains have been obtained pre-
viously (see Ref. 18 and references therein); however, the
focus of these studies has been to analyze macroscopic prop-
erties.

We perform exact calculations of 1D systems having N
atoms described by the Hubbard model. We use the standard
direct diagonalization method!®** and impose open boundary
conditions in order to break the translational symmetry. This
approach is very well suited for small-sized clusters as stud-
ied here; however, it is very inefficient if we increase the size
of the system. Monte Carlo methods have proven efficient in
studying systems with a large number of atoms, and thus a
modern quantum Monte Carlo method?! is probably the more
efficient approach to study temperature-dependent local
quantities with the 1D Hubbard model with open boundary
conditions.

We have found in a half-filled band for U=0 that the
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FIG. 3. Values of ny(i) for a chain of eight sites in the quarter-
filled band (a) versus U/ for temperature 7=0 and (b) versus T for
U/t=8.

occupation number of the ground state is site independent.
For U>0 this result is valid for all states. This is relevant in
order to evaluate the thermodynamic quantity (n(i)). We ob-
tain in a half-filled band that {(n(i))=1/N for all sites i, tem-
peratures 7, and couplings U>0. This is a valuable result
because the sites are not equivalent due to the use of open
boundary conditions. We observe that, using conformal
quantum-field theory, we expect that (n(i)) exhibits a Friedel
oscillation of an  analytical form  (n(i))=n/N
—sin(2kgi)/(2Ni"),?* which for a half-filled band, kp=/2,
and (n(i))=1/N is site independent.

For other than half-filled bands, we observe a site depen-
dence of n,,(i). For a quarter-filled Hubbard band we have
found a rich dependence on U, m, i, and T. Figure 3(a) pre-
sents the topography of ny(i) versus U/t for a chain of eight
sites in the quarter-filled band at the temperature 7=0. For
small U/t, the intermediate atoms have larger value than
average and the end and central atoms have smaller values.
Thus, the probability of finding electrons on the intermediate
atoms is higher. The site dependence decreases if the
electron-electron interaction increases. For U/t— = the site
dependence disappears, and for all i we find ny(i)=1/8. We
can alternatively fix U/t and vary the temperature in order to
cover the other energy states. Figure 3(b) shows this for
U/t=8 (other values of U/t give similar results). The effect
of increasing the temperature is equivalent to an increase of
U/t. A large temperature destroys the site dependence of the
charges on the chain. While this statement seems true for the
local occupation number, there are other quantities, such as
intersite spin correlations, that may not follow this rule. In
particular, for the half-filled band, U=0 is a quantum critical
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FIG. 4. (a) Site-dependent spin Sy(i)/S versus the position i for
a chain of seven sites, for a half-filled band, U/t=8, and different
total spin S=2,;Sy(i). (b) Sy(i) for a chain of six sites for a quarter-
filled band versus position i for temperature 7=0 and U/¢=0, 2, 8§,
16, and 50.

point and in its vicinity a critical correlation may be charac-
terized by a diverging length.?? In this case, the correlation
at finite temperature’* would be cut off at some finite
temperature-dependent thermal coherence length.

For the magnetic properties of finite chains, first-
principles calculations have shown that for small chains the
spin moment depends on position and cluster length. For
example, for Co chains on Pt(111), the spin moments of the
end atoms are higher than those of the central atoms and the
spin moment of the central atom was found to decrease if the
chain size increases.” Results of the present study are illus-
trated in Fig. 4. We have studied the local spin number

S,li) = (W, |5

.., (6)

where §f=(ﬁ”—ﬁu)/2 at site i.

The local spin number Sy(i) versus the position i for a
chain of seven sites, for the half-filled band and temperature
T=0, can be calculated for different total spins S=X,5,(i)
and U/r=8. For S=1/2 the alternating sign of S,(i) for odd
and even positions gives evidence for an antiferromagnetic
structure. The cases S>> 1/2 have a ferromagnetic structure,
since all S,(i) have the same sign. Site independence is found
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for §=7/2. On the other hand, when S is between the mini-
mal and maximal values we find a site dependence for Sy(i),
with an amplitude that still alternates but not sufficiently to
change its sign. For S=5/2 we obtain that Sy(i) is larger at
the end atoms than at the central atoms as has been found for
Co chains on Pt(111).2 We have found that for the case of
even total electron number [n,,=2n,,(i)] the S,,(i) is site
independent in all m states. (S(i))=0 for all sites i, tempera-
tures 7, and couplings U. Considering N even, using the fact
that (n(i))=1/N in the half-filled band and {S(i))=0, the ca-
nonical ensemble averages are site independent, like in the
mean field, and (n(i))=(n(i))=1/(2N), indicating that the
open finite even chain is paramagnetic in the half-filled band.
It is important to mention that we find site independence
although the system has no translational symmetry. The
situation for odd finite chains is different. In this case
(n(i))=1/N, but (S(i)) has a complex site dependence. For
the ground state, at U=0 we obtain a structure in which
So(i)=1/(N+1) and on the nearest-neighbor sites Sy(i)=0. At
U>0 we observe an antiferromagnetic structure.

Finally, we explore the dependence of the site-dependent
spin on the coupling U. Figure 4(b) shows Sy(i) for the
quarter-filled band versus i for a chain of six atoms and typi-
cal U/t values. The ground state has S=1/2. Here, we show
the case S°=1/2. For low U/t all (i) have the same sign
favoring a ferromagnetic order and the higher Sy(i) values
are at intermediate atoms and the smaller at the central at-
oms. Increasing U/t the central atoms assume negative val-
ues for the spin and the higher Sy(i) shift to the end atoms
following a T7]/7T magnetic stripe structure. In fact, for
larger chains, the spectral properties of the 1D Hubbard
model have been explored in the literature’®?” such as the
spinon and holon excitations which have provided a precise
characterization of the behavior of the local spin for states of
nonzero local S*.

The control and manipulation of the spin rather than the
charge of electrons®® in STM could show the very rich be-
havior of the local magnetic properties presented here. It
would be of interest to explore the possibility of obtaining
experimental results in the context of magnetic force micros-
copy (MFM) or STM devices.?’ The principle behind the
“spin STM” would be the tunneling of electrons between the
tip and the surface of the sample generated by a current of
spin-polarized electrons. This would generate images that are
sensitive to the spin polarization of the electrons. The site-
dependent magnetic moment (spin) shown here could be
confirmed by these experiments.

IV. CONCLUSION

We have shown that the spatial peak structure of STM
constant-current topography can be explained in terms of the
site-dependent occupation number. We interpret the even-odd
oscillation of the length distribution of atom chains. We also
have studied the spatial structure of the electronic charge and
spin on finite chains, involving band filling, temperature, and
electron-electron interaction, and we examined the site-
dependent magnetic moment (spin) indicating properties that
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may be confirmed by a possible STM device sensitive to the
spin polarization of the electrons. This work provides a
simple theoretical explanation for the electronic confinement
in atomic chains and opens up a way for a more detailed
analysis of the recent STM measurements.
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